summaryrefslogtreecommitdiff
path: root/maths/work/rev/parametrics.ms
blob: eca4a72740ef44b7d558ea2655ea460727cb490e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
.TL
Parametric equations
.AU
Lucas Standen
.AI
QMC

.EQ
delim @@
.EN
.EQ
delim @#
.EN

.2C

.NH 1
What are they?

.LP
Parametric equations are two equations that are linked by a common variable usually @ t #

They are written in the format 
.EQ
x = at
.EN
.EQ
y = bt
.EN
The can also include trig functions, exponents and other parts of maths

You may be asked to, convert to Cartesian, find the range and domain, differentiate and finding points of intersection

.NH 1
Converting to Cartesian
.LP

You will often be asked to convert to a Cartesian equivalent equation. To do that you will need to rearrange one of the given equations to get it in terms of @ t #, then substitute that value into the other equation. You will most often find that rearranging @ x # is easier as this will result in an equation equal to @ y #.

.NH 2
Example
.EQ
x = 2t
.EN

.EQ
y = t sup 2
.EN

.EQ
t = x over 2
.EN

.EQ
y = ({x over 2}) sup 2
.EN

.EQ
y = x sup 2 over 4
.EN

.NH 1
Finding the domain and range
.LP
The domain of the Cartesian equation is the range of the @ x # and the range of the Cartesian is the range of the @ y # equation.

.NH 2
Examples
.LP
.EQ
x = t - 2
.EN

.EQ
y = t sup 2 + 1
.EN

.EQ
"where" -4 <= t <= 4
.EN

.EQ
t = x + 2
.EN

.EQ
y = (x + 2) sup 2 + 1
.EN

.EQ
y = x sup 2 + 4x + 4 + 1
.EN

.EQ
y = x sup 2 + 4x + 5
.EN

.EQ
f(x) = x sup 2 + 4x + 5
.EN

.EQ
domain = -6 <= x <= 2
.EN

.EQ
range = 1 <= f(x) <= 16
.EN

.NH 1
Differentiating Parametric equations
.LP
This process is relatively simple, and can be solved by viewing @ dy over dx # as fractions. As we can already find @ dx over dt # and @ dy over dt # we can say the following.

.EQ
dy over dx = {dy over dt} over {dx over dt}
.EN

This is because the @ dt # will cancel out on the top and bottom.

.NH 2
Examples
.LP

.EQ
x = 2t
.EN

.EQ
y = t sup 2 - 3t + 2
.EN

.EQ
dx over dt = 2
.EN

.EQ
dy over dt = 2t - 3
.EN

.EQ
{dy over dt} over {dx over dt} = 2 over {2t -3}
.EN

.NH 1
Points of intersection
.LP
This is as simple as substituting in numbers for the most part although sometimes it can be harder due to trig identities showing up.

.NH 2
Example
.LP
Lets say we have the parametric @ x = t sup 2 # and @ y = 8t - 5 # and we want to know if there is any points of
intersection with the line @ y = 5x + 4 #

To solve this we can find the Cartesian equation and then do this normally.
.EQ
t = sqrt x
.EN

.EQ
y = 8{sqrt x} - 5
.EN

.EQ
"Then we can say"
.EN

.EQ
5x + 4 = 8{sqrt x} - 5
.EN

.EQ
5x + 9 = 8{sqrt x}
.EN

.EQ
5x over 8 + 9 over 8 = sqrt x
.EN

.EQ
({5x over 8 + 9 over 8}) sup 2 = x
.EN

.EQ
{25x sup 2 over 64 + 81 over 64} = x
.EN

.EQ
25x sup 2 + 81 = 64x
.EN

.EQ
25x sup 2 -64x + 81 = 0
.EN

.EQ
"This has no points of intersection because x is imaginary"
.EN

.LP 
EX 8D Q1a
.EQ
x = 5 + t
.EN
.EQ
y = 6 - t
.EN
.EQ
y = 6 - (x - 5)
.EN
.EQ
y = 11 - x
.EN
.EQ
0 = 11 - x
.EN
.EQ
-11 = - x
.EN

.EQ
11 = x
.EN
.LP

EX 8D 12b
.EQ
x = 6cos(t)
.EN
.EQ
y = 4sin(2t) + 2
.EN
.EQ
-{pi over 2} < t < {pi over 2}
.EN

.EQ
4 = 4sin(2t) + 2
.EN

.EQ
2 = 4sin(2t) 
.EN

.EQ
1 over 2 = sin(2t) 
.EN

.EQ
2t = arcsin({1 over 2})
.EN

.EQ
2t = pi over 6, {5 pi} over 6
.EN

.EQ
t = pi over 12, {5 pi} over 12
.EN

.LP
EX 8D 12c

.EQ
x = 6cos(t)
.EN

.EQ
x = 3 sqrt 3, - 3 sqrt 3
.EN

.EQ
(3 sqrt 3, 4), (- 3 sqrt 3, 4)
.EN

.LP
EX 8D 13

.EQ
x = 2t
.EN
.EQ
y = 4t sup 2 - 4t
.EN

.EQ
t = x over 2
.EN

.EQ
y = 4({x over 2}) sup 2 - 4 ({x over 2})
.EN

.EQ
y = 4({x sup 2 over 4}) - 4 ({x over 2})
.EN

.EQ
y = x sup 2 - 4 ({x over 2})
.EN

.EQ
y = x sup 2 - 2x 
.EN

.EQ
2x - 5  = x sup 2 - 2x 
.EN

.EQ
0 = x sup 2 - 4x + 5
.EN

.EQ
sqrt {-4 sup 2 - 4 (1) (5) }
.EN

.EQ
sqrt {16 - 20 }
.EN

.EQ
sqrt {-4}
.EN

.EQ
sqrt {-4} " has no real solutions!"
.EN

.NH 1
Parametric with trig
.LP
Trig often shows up in parametric equations, however using the identities we know, they can be easy to solve. The reason they are harder, is because we can't rearrange to get @ t # like in other questions.

What we have to do is to use the identities we know, such as
.EQ
sin sup 2 (x) + cos sup 2 (x) = 1
.EN

An example would be the following

.EQ
x = 2sin(t)
.EN

.EQ
y = cos(t) + 2
.EN

.EQ
sin(t) = x over 2
.EN

.EQ
cos(t) = y - 2
.EN

.EQ
({x over 2}) sup 2 + (y - 2) sup 2 = 1
.EN

.EQ
{x sup 2 over 4} + y sup 2 -4y + 4 = 1
.EN

.EQ
{x sup 2 over 4} + y sup 2 -4y + 4 = 1
.EN

.EQ
{x sup 2} + 4y sup 2 -16y + 16 = 4
.EN

.EQ
{x sup 2} -16y + 16 - 4= -4y sup 2
.EN

.EQ
{x sup 2} + 12 = -4y sup 2 + 16y
.EN

This is an oval shape.