blob: 37c89dfc699be220865286f86e8060836cd779b1 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
|
.TL
Vectors in comp sci
.AU
Lucas Standen
.AI
QMC
.2C
.EQ
delim @@
.EN
.EQ
delim @#
.EN
.NH 1
How to write them
.LP
To write a vector, like in maths we can use
.EQ
({i sub x, j sub y})
.EN
But they can also be written
.EQ
R sup 2
.EN
.EQ
R sup 3
.EN
Where the power is the number of degrees available
.NH 1
Combining vectors
.LP
To combine vectors one can use the formula
.EQ
w = alpha u + beta v
.EN
Where w is the combined vector and
.EQ
alpha + beta = 1
.EN
.NH 2
Example
.EQ
u = (2,2)
.EN
.EQ
v = (6,-2)
.EN
We can then say that
.EQ
w = (4, 0)
.EN
By subtracting v from u
Then using the formula
.EQ
2 alpha + 6 beta = 3
.EN
Where 3 is a point on the combined vector
.EQ
2 alpha + -2 beta = 1
.EN
We can then solve for @ beta # like so
.EQ
6 beta - 3 = -2 beta - 1
.EN
.EQ
8 beta - 2 = 0
.EN
.EQ
8 beta = 2
.EN
.EQ
beta = 2 over 8
.EN
.EQ
beta = 1 over 4
.EN
From this we can say
.EQ
alpha = 3 over 4
.EN
Because
.EQ
alpha + beta = 1
.EN
.NH 2
Another example
.EQ
2 alpha + 6 beta = 2
.EN
.EQ
2 alpha - 2 beta = 1
.EN
.EQ
8 beta = 1
.EN
.EQ
beta = 1 over 8
.EN
.EQ
2 alpha - 2 ({1 over 8}) = 1
.EN
.EQ
2 alpha = 5 over 4
.EN
.EQ
alpha = 5 over 8
.EN
Since
.EQ
alpha + beta != 1
.EN
We can say that w does not lie on the vector uv
And because it is greater than 1 it means it is inside the triangle created by u and v
.NH 1
The dot product
.LP
To solve use the following formula
.EQ
u.v = |u|.|v| cos( theta )
.EN
Where @ theta # is the angle between the 2 vectors and
.EQ
|u| = " magnitude of u, " sqrt {x sup 2 + y sup 2}
.EN
You can also use
.EQ
u.v = u sub 1 . v sub 1 + u sub 2 . v sub 2 + u sub n + v sub n ...
.EN
If you don't have the angle
Don't be confused by the dot, it just means
.EQ
u sub 1 . v sub 1 = u sub 1 times v sub 1
.EN
.NH 2
Exam question
.LP
1.1)
.EQ
|b| = 4
.EN
1.2)
.EQ
u.v = u sub 1 . v sub 1 + u sub 2 . v sub 2 + u sub n + v sub n ...
.EN
.EQ
a.b = 4 . 4 + 3 . 0
.EN
.EQ
a.b = 16 + 0
.EN
.EQ
a.b = 16
.EN
|