diff options
Diffstat (limited to 'comp')
-rw-r--r-- | comp/work/51/Makefile | 2 | ||||
-rw-r--r-- | comp/work/51/vectors.ms | 193 |
2 files changed, 195 insertions, 0 deletions
diff --git a/comp/work/51/Makefile b/comp/work/51/Makefile new file mode 100644 index 0000000..ec0f613 --- /dev/null +++ b/comp/work/51/Makefile @@ -0,0 +1,2 @@ +all: vectors.ms + eqn vectors.ms | groff -Tps -ms | ps2pdf - > vectors.pdf diff --git a/comp/work/51/vectors.ms b/comp/work/51/vectors.ms new file mode 100644 index 0000000..37c89df --- /dev/null +++ b/comp/work/51/vectors.ms @@ -0,0 +1,193 @@ +.TL +Vectors in comp sci +.AU +Lucas Standen +.AI +QMC +.2C + +.EQ +delim @@ +.EN + +.EQ +delim @# +.EN + +.NH 1 +How to write them + +.LP +To write a vector, like in maths we can use +.EQ +({i sub x, j sub y}) +.EN +But they can also be written +.EQ +R sup 2 +.EN + +.EQ +R sup 3 +.EN +Where the power is the number of degrees available + +.NH 1 +Combining vectors +.LP +To combine vectors one can use the formula +.EQ +w = alpha u + beta v +.EN +Where w is the combined vector and +.EQ +alpha + beta = 1 +.EN + +.NH 2 +Example +.EQ +u = (2,2) +.EN + +.EQ +v = (6,-2) +.EN + +We can then say that +.EQ +w = (4, 0) +.EN +By subtracting v from u + +Then using the formula +.EQ +2 alpha + 6 beta = 3 +.EN +Where 3 is a point on the combined vector +.EQ +2 alpha + -2 beta = 1 +.EN + +We can then solve for @ beta # like so + +.EQ +6 beta - 3 = -2 beta - 1 +.EN + +.EQ +8 beta - 2 = 0 +.EN + +.EQ +8 beta = 2 +.EN + +.EQ +beta = 2 over 8 +.EN + +.EQ +beta = 1 over 4 +.EN + +From this we can say +.EQ +alpha = 3 over 4 +.EN +Because +.EQ +alpha + beta = 1 +.EN + +.NH 2 +Another example + +.EQ +2 alpha + 6 beta = 2 +.EN + +.EQ +2 alpha - 2 beta = 1 +.EN + +.EQ +8 beta = 1 +.EN + +.EQ +beta = 1 over 8 +.EN + +.EQ +2 alpha - 2 ({1 over 8}) = 1 +.EN + +.EQ +2 alpha = 5 over 4 +.EN + +.EQ +alpha = 5 over 8 +.EN + +Since +.EQ +alpha + beta != 1 +.EN +We can say that w does not lie on the vector uv + +And because it is greater than 1 it means it is inside the triangle created by u and v + +.NH 1 +The dot product + +.LP +To solve use the following formula + +.EQ +u.v = |u|.|v| cos( theta ) +.EN + +Where @ theta # is the angle between the 2 vectors and + +.EQ +|u| = " magnitude of u, " sqrt {x sup 2 + y sup 2} +.EN + +You can also use +.EQ +u.v = u sub 1 . v sub 1 + u sub 2 . v sub 2 + u sub n + v sub n ... +.EN +If you don't have the angle + +Don't be confused by the dot, it just means +.EQ +u sub 1 . v sub 1 = u sub 1 times v sub 1 +.EN + +.NH 2 +Exam question + +.LP +1.1) +.EQ +|b| = 4 +.EN + +1.2) +.EQ +u.v = u sub 1 . v sub 1 + u sub 2 . v sub 2 + u sub n + v sub n ... +.EN + +.EQ +a.b = 4 . 4 + 3 . 0 +.EN + +.EQ +a.b = 16 + 0 +.EN + +.EQ +a.b = 16 +.EN |