.2C .NH Differentiating standard equations .EQ L dy over dx = n x sup n-1 .EN .NH 2 Example .LP Define the equation .EQ L y = 5 x sup 2 + 19 x + 8 .EN Use the formula .EQ L dy over dx = 10 x + 19 .EN Its very simple .NH Differentiating trig equations .LP From the chain rule, one can find the following: .EQ L sin(kx) -> k cos(kx) .EN .EQ L cos(kx) -> -k sin(kx) .EN .EQ L tan(kx) -> k sec sup 2 (kx) .EN .EQ L sec(kx) -> k sec(kx) tan(kx) .EN .EQ L cot(kx) -> -k cosec sup 2 (kx) .EN .EQ L cosec(kx) -> -k cosec(kx) cot(kx) .EN .NH Chain rule .EQ L dy over dx = dy over dt times dt over dx .EN .NH 2 Example .LP Define the function .EQ L y =sin sup 2 (9x) .EN Re-write y in terms of t .EQ L Y =sin sup 2 (t) .EN Define t .EQ L t = 9x .EN Differentiate y with respect to t .EQ L dy over dt = 2cos(t) .EN Differentiate y with respect to x .EQ L dt over dx = 9 .EN Times the two together .EQ L dy over dx = 2cos(t) times 9 .EN Substute the original t back in .EQ L dy over dx = 18cos(9x) .EN .NH Product rule .EQ L "when " y = u v .EN .EQ L dy over dx = ( v prime times u ) + ( v times u prime ) .EN .NH 2 Example .LP Define the equation .EQ L y = sin(x) cos(x) .EN Define u and v .EQ L u = sin(x) .EN .EQ L v = cos(x) .EN Differentiate indiviually .EQ L u prime = cos(x) .EN .EQ L v prime = -sin(x) .EN Put into the formula .EQ L ( v prime times u ) + ( v times u prime ) = -sin(x)sin(x) + cos(x)cos(x) .EN Simplify .EQ L dy over dx = -sin sup 2 (x) +cos sup 2 (x) .EN .EQ L dy over dx = cos(2x) .EN