.TL Vectors in comp sci .AU Lucas Standen .AI QMC .2C .EQ delim @@ .EN .EQ delim @# .EN .NH 1 How to write them .LP To write a vector, like in maths we can use .EQ ({i sub x, j sub y}) .EN But they can also be written .EQ R sup 2 .EN .EQ R sup 3 .EN Where the power is the number of degrees available .NH 1 Combining vectors .LP To combine vectors one can use the formula .EQ w = alpha u + beta v .EN Where w is the combined vector and .EQ alpha + beta = 1 .EN .NH 2 Example .EQ u = (2,2) .EN .EQ v = (6,-2) .EN We can then say that .EQ w = (4, 0) .EN By subtracting v from u Then using the formula .EQ 2 alpha + 6 beta = 3 .EN Where 3 is a point on the combined vector .EQ 2 alpha + -2 beta = 1 .EN We can then solve for @ beta # like so .EQ 6 beta - 3 = -2 beta - 1 .EN .EQ 8 beta - 2 = 0 .EN .EQ 8 beta = 2 .EN .EQ beta = 2 over 8 .EN .EQ beta = 1 over 4 .EN From this we can say .EQ alpha = 3 over 4 .EN Because .EQ alpha + beta = 1 .EN .NH 2 Another example .EQ 2 alpha + 6 beta = 2 .EN .EQ 2 alpha - 2 beta = 1 .EN .EQ 8 beta = 1 .EN .EQ beta = 1 over 8 .EN .EQ 2 alpha - 2 ({1 over 8}) = 1 .EN .EQ 2 alpha = 5 over 4 .EN .EQ alpha = 5 over 8 .EN Since .EQ alpha + beta != 1 .EN We can say that w does not lie on the vector uv And because it is greater than 1 it means it is inside the triangle created by u and v .NH 1 The dot product .LP To solve use the following formula .EQ u.v = |u|.|v| cos( theta ) .EN Where @ theta # is the angle between the 2 vectors and .EQ |u| = " magnitude of u, " sqrt {x sup 2 + y sup 2} .EN You can also use .EQ u.v = u sub 1 . v sub 1 + u sub 2 . v sub 2 + u sub n + v sub n ... .EN If you don't have the angle Don't be confused by the dot, it just means .EQ u sub 1 . v sub 1 = u sub 1 times v sub 1 .EN .NH 2 Exam question .LP 1.1) .EQ |b| = 4 .EN 1.2) .EQ u.v = u sub 1 . v sub 1 + u sub 2 . v sub 2 + u sub n + v sub n ... .EN .EQ a.b = 4 . 4 + 3 . 0 .EN .EQ a.b = 16 + 0 .EN .EQ a.b = 16 .EN