diff options
Diffstat (limited to 'maths/work/rev1')
-rw-r--r-- | maths/work/rev1/Makefile | 4 | ||||
-rw-r--r-- | maths/work/rev1/parametrics.ms | 329 |
2 files changed, 333 insertions, 0 deletions
diff --git a/maths/work/rev1/Makefile b/maths/work/rev1/Makefile new file mode 100644 index 0000000..acac884 --- /dev/null +++ b/maths/work/rev1/Makefile @@ -0,0 +1,4 @@ +all: parametrics.ms + eqn parametrics.ms | groff -Tps -ms | ps2pdf - > parametrics.pdf + + diff --git a/maths/work/rev1/parametrics.ms b/maths/work/rev1/parametrics.ms new file mode 100644 index 0000000..e334ffa --- /dev/null +++ b/maths/work/rev1/parametrics.ms @@ -0,0 +1,329 @@ +.TL +Parametric equations +.AU +Lucas Standen +.AI +QMC + +.EQ +delim @@ +.EN +.EQ +delim @# +.EN + +.2C + +.NH 1 +What are they? + +.LP +Parametric equations are two equations that are linked by a common variable usually @ t # + +They are written in the format +.EQ +x = at +.EN +.EQ +y = bt +.EN +The can also include trig functions, exponents and other parts of maths + +You may be asked to, convert to Cartesian, find the range and domain, differentiate and finding points of intersection + +.NH 1 +Converting to Cartesian +.LP + +You will often be asked to convert to a Cartesian equivalent equation. To do that you will need to rearrange one of the given equations to get it in terms of @ t #, then substitute that value into the other equation. You will most often find that rearranging @ x # is easier as this will result in an equation equal to @ y #. + +.NH 2 +Example +.EQ +x = 2t +.EN + +.EQ +y = t sup 2 +.EN + +.EQ +t = x over 2 +.EN + +.EQ +y = ({x over 2}) sup 2 +.EN + +.EQ +y = x sup 2 over 4 +.EN + +.NH 1 +Finding the domain and range +.LP +The domain of the Cartesian equation is the range of the @ x # and the range of the Cartesian is the range of the @ y # equation. + +.NH 2 +Examples +.LP +.EQ +x = t - 2 +.EN + +.EQ +y = t sup 2 + 1 +.EN + +.EQ +"where" -4 <= t <= 4 +.EN + +.EQ +t = x + 2 +.EN + +.EQ +y = (x + 2) sup 2 + 1 +.EN + +.EQ +y = x sup 2 + 4x + 4 + 1 +.EN + +.EQ +y = x sup 2 + 4x + 5 +.EN + +.EQ +f(x) = x sup 2 + 4x + 5 +.EN + +.EQ +domain = -6 <= x <= 2 +.EN + +.EQ +range = 1 <= f(x) <= 16 +.EN + +.NH 1 +Differentiating Parametric equations +.LP +This process is relatively simple, and can be solved by viewing @ dy over dx # as fractions. As we can already find @ dx over dt # and @ dy over dt # we can say the following. + +.EQ +dy over dx = {dy over dt} over {dx over dt} +.EN + +This is because the @ dt # will cancel out on the top and bottom. + +.NH 2 +Examples +.LP + +.EQ +x = 2t +.EN + +.EQ +y = t sup 2 - 3t + 2 +.EN + +.EQ +dx over dt = 2 +.EN + +.EQ +dy over dt = 2t - 3 +.EN + +.EQ +{dy over dt} over {dx over dt} = 2 over {2t -3} +.EN + +.NH 1 +Points of intersection +.LP +EX 8D Q1a +.EQ +x = 5 + t +.EN +.EQ +y = 6 - t +.EN +.EQ +y = 6 - (x - 5) +.EN +.EQ +y = 11 - x +.EN +.EQ +0 = 11 - x +.EN +.EQ +-11 = - x +.EN + +.EQ +11 = x +.EN + +.LP +EX 8D Q12a +.EQ +x = 6cos(t) +.EN +.EQ +y = 4sin(2t) + 2 +.EN +.EQ +-{pi over 2} < t < {pi over 2} +.EN + +.EQ +x over 6 = cos(t) +.EN + +.EQ +y = 4(2sin(t)cos(t)) +.EN + +.EQ +y = 8sin(t)cos(t) +.EN + +.EQ +y over 8cos(t) = sin(t) +.EN + +Using the identity @ sin sup 2 x + cos sup 2 x = 1 # + +.EQ +1 = {y over 8cos(t)} sup 2 + {x over 6} sup 2 +.EN + +.EQ +1 = {y sup 2 over {64cos sup 2 (t)}} + {x sup 2 over 36} +.EN + +.EQ +1 = {0 over {64cos sup 2 (t)}} + {x sup 2 over 36} +.EN + +.EQ +1 = {x sup 2 over 36} +.EN + +.EQ +36 = x sup 2 +.EN + +.EQ +x = 6, -6 +.EN + +.LP +EX 8D 12b +.EQ +x = 6cos(t) +.EN +.EQ +y = 4sin(2t) + 2 +.EN +.EQ +-{pi over 2} < t < {pi over 2} +.EN + +.EQ +4 = 4sin(2t) + 2 +.EN + +.EQ +2 = 4sin(2t) +.EN + +.EQ +1 over 2 = sin(2t) +.EN + +.EQ +2t = arcsin({1 over 2}) +.EN + +.EQ +2t = pi over 6, {5 pi} over 6 +.EN + +.EQ +t = pi over 12, {5 pi} over 12 +.EN + +.LP +EX 8D 12c + +.EQ +x = 6cos(t) +.EN + +.EQ +x = 3 sqrt 3, - 3 sqrt 3 +.EN + +.EQ +(3 sqrt 3, 4), (- 3 sqrt 3, 4) +.EN + +.LP +EX 8D 13 + +.EQ +x = 2t +.EN +.EQ +y = 4t sup 2 - 4t +.EN + +.EQ +t = x over 2 +.EN + +.EQ +y = 4({x over 2}) sup 2 - 4 ({x over 2}) +.EN + +.EQ +y = 4({x sup 2 over 4}) - 4 ({x over 2}) +.EN + +.EQ +y = x sup 2 - 4 ({x over 2}) +.EN + +.EQ +y = x sup 2 - 2x +.EN + +.EQ +2x - 5 = x sup 2 - 2x +.EN + +.EQ +0 = x sup 2 - 4x + 5 +.EN + +.EQ +sqrt {-4 sup 2 - 4 (1) (5) } +.EN + +.EQ +sqrt {16 - 20 } +.EN + +.EQ +sqrt {-4} +.EN + +.EQ +sqrt {-4} " has no real solutions!" +.EN |